Investigation of Mechanical Performance of Squeezed Magnetorheological Fluid Using Response Surface Method

نویسندگان

  • I. Ismail
  • S. A. Mazlan
  • H. Zamzuri
  • A. G. Olabi
چکیده

In this paper, effects of critical parameters, namely initial gap, squeezing speed and applied current were statistically investigated on the mechanical behaviour of MR fluid in squeeze mode. A set of 17 experiments was designed using Design Expert 7 software to gather data from response surface methodology (RSM). The responses in terms of compression modulus were then calculated. An MRF132-DG was used as a sample in each experiment. The experiments were conducted under compression stress mode using universal testing machine (UTM). Stress-strain curves were analysed using the machine integrated TestXpert analyser software package. The stressstrain curves of MR fluid under squeeze have produced a shear thickening behaviour at 13.54 MPa of the highest stress at 0.75 of strain. A correlation between the three parameters and the stressstrain properties was specified. The results showed that the initial gap and supplied current were significantly produced a high compression modulus for the MR materials. These findings are important to enhance the capability of the squeeze MR devices to operate at its best performance. High compressive stress is crucial for most magnetorheological (MR) materials, particularly in squeeze mode devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Design of Magnetorheological Fluid Damper Based on Response Surface Method

In this research, the effect of shape parameters such as number of magnet wire turns, spools, thickness of the gap, and pole length in a Magneto-rheological (MR) fluid damper is analytically investigated and the optimization of these parameters is done with response surface method (RSM) which is combined Neuro-Fuzzy method and Particle Swarm Optimization (PSO) algorithm. Since the electro-magne...

متن کامل

Performance Investigation of 405 Stainless Steel Thermosyphon using Cerium (IV) Oxide Nano Fluid

A thermosyphon is an efficient heat transfer device, which transports heat using gravity for the evaporation and condensation of the working fluid. In the present study the Box-Benhnken (BBD) design approach was chosen for the Two-Phase Closed Thermosyphon (TPCT) with CeO2 nanofluid using 0.1% volume of Nanofluid with surfactant of ethylene glycol. The experiment resulted in identifying the opt...

متن کامل

Thermodynamic Analysis and Statistical Investigation of Effective Parameters for Gas Turbine Cycle using the Response Surface Methodology

In this paper, the statistical analyses are presented to study the thermal efficiency and power output of gas turbine (GT) power plants. For analyzing gas turbine operation and performance, a novel approach is developed utilizing the response surface methodology (RSM) which is based on the central composite design (CCD) method. An attempt is made to study the effect of some operational factors ...

متن کامل

Investigation of stepped planning hull hydrodynamics using computational fluid dynamics and response surface method

The use of step at the bottom of the hull is one of the effective factors in reducing the resistance and increasing the stability of the Planning hull. The presence of step at the bottom of this type of hulls creates a separation in the flow, which reduces the wet surface on the hull, thus reducing the drag on the body, as well as reducing the dynamic trim. In this study, a design space was cre...

متن کامل

Minimization of the Sheet Thinning in Hydraulic Deep Drawing Process Using Response Surface Methodology and Finite Element Method

In most of the sheet forming processes, production of the parts with minimum thickness variation and low required force is important. In this research, minimization of the sheet thinning and forming force in the hydraulic deep drawing process has been studied. Firstly, the process is simulated using the finite element method (FEM) and simulation model is verified using the experimental results....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016